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Modularity in programming

● Software should have correct abstractions that can compose
● “Type structure is a syntactic discipline for enforcing levels of abstraction” - John Reynolds

● Representation Independence
○ Programmers can give different implementations for the same abstract interface
○ e.g. Two different implementations of a queue can be interchangeable
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Parametricity

● Parametrically polymorphic functions behave uniformly in their type arguments
○ Strachey (1967) / Lambek(1972) “generality”

● Reynold’s relational parametricity (1983)
○ System F (polymorphic lambda-calculus)
○ Logical relations: related inputs lead to related outputs

● Mitchell’s representation independence and data abstraction (1986)
○ Applies parametricity to prove representation independence for existential types

● Wadler’s free theorems (1989)
○ “Every function of the same type satisfies the same theorem”

3
..beyond System F!



Dependently-Typed Programming

● Good: Rich program specifications
● Not so good: Notoriously labor-intensive

How can we bring about representation independence to dependently-typed programming?
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Internalizing Relational Parametricity in the 
Extensional Calculus of  Constructions

λ
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     Krishnaswami & Dreyer 2013

Internalizing Relational Parametricity in the Extensional 
Calculus of  Constructions
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Parametric Type Theories

● Abstraction Theorem 

● Internalized parametricity: Abstraction Theorem can be stated and proved within type 
theory

● Externalized parametricity: Abstraction Theorem is stated through a meta-theoretic 
translation.
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Bernardy et al. [2010, 2012a, 2012b, 2013, 2015]

     Krishnaswami & Dreyer 2013



Equality in Dependent Type Theory

Judgmental  Equality 

Set of equality rules that are (inductively) defined

Definitional Equality type-checker silently coerces between definitionally equal types

Propositional Equality

Proof of equality between two elements
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     Krishnaswami & Dreyer 2013

Type-checking requires checking term equality



Equality in Type Theory

Extensional type theory : equality reflection 

Uniqueness of Identity Proofs (UIP) : Any two elements of  

Streicher’s Axiom K 
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are equal.

     Krishnaswami & Dreyer 2013

For the context of parametricity: Allow coercions between parametrically related terms!



Realizability Semantics

● Taking the Brouwer–Heyting–Kolmogorov (BHK) Interpretation to heart
○ The interpretation of a logical formula is the proof  (realizer)
○ e.g. P /\ Q  interprets to  <a, b> where a is a proof of P and b is a proof of Q

● What if you have a formula which you have a proof of…
○ But your typing rules do not “type-check” the formula?

● It must be true! Add the formula to the theory! 
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Syntactic 
formalisms 

cannot show all 
truths!

Gödel's 
Incompleteness 
Theorem
(1931)

     Krishnaswami & Dreyer 2013



Realizability-style Model

● Interprets types as relations (logical relations)
● Quasi-PERs (QPERs) to show heterogeneous equivalences 

○ Typically, the interpretation is a partial equivalence relation (aka PER, a symmetric and transitive relation)
○ Symmetry requires homogeneity (relation must relate two terms of equal types)

12

     Krishnaswami & Dreyer 2013

● Can use a single relational model for relating terms at different types
○ (Instead of requiring a PER model of types and a relational model between PERs)



Internalizing relational parametricity
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     Krishnaswami & Dreyer 2013

● Relationally parametric model of an extensional Calculus of Constructions
● Realizability-style interpretation of types

○ Types interpreted as relations
○ Realizer: Exhibit a term that is related to itself at the type (semantically well-typed term)

● Can add “validated axioms” to the theory which have realizers
relational interpretation 
realizer e 
axiom X 



Adding axioms with computational content to theory

● Dependent pairs (Σ-types)
● Induction principle for natural numbers
● Quotient types

The axiom may not be syntactically well-typed, but the realizer of the axiom 

(i.e. the proof of the axiom) is semantically well-typed!
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     Krishnaswami & Dreyer 2013
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     Krishnaswami & Dreyer 2013

Marriage of  Univalence and Parametricity

Tabareau et al. 2019



Goal: Automated Proof Transport

Given two implementation of natural numbers, we should be able to reuse proofs between them
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Tabareau et al. 2019

Inductive nat : Set :=
| O : nat
| S : nat → nat

Inductive Bin : Set :=
| OBin : Bin
| posBin : positive → nat

Inductive positive : Set :=
| xI : positive → positive
| xO : positive → positive
| xH : positive

Easy to reason about Efficient



Goal: Automated Proof Transport

Given two implementation of natural numbers, we should be able to reuse proofs between them
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Tabareau et al. 2019

Lemma plus_comm : ∀ n m : nat, n + m = m + n. 
Proof. 

... 
Qed.

Lemma plusBin_comm : ∀ n m : Bin, n + m = m + n. 
Proof. 

transport plus_comm. (* automatically inferred *)
Qed.



Using parametricity for refinement

Given two implementation of natural numbers, we should be able to reuse proofs between them
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Tabareau et al. 2019

Lemma plus_comm : ∀ n m : nat, n + m = m + n. 
Proof. 

... 
Qed.

Lemma plusBin_comm : ∀ n m : Bin, n + m = m + n. 
Proof. 

transport plus_comm. (* automatically inferred *)
Qed.



1. Specifying a common abstract interface a priori can be difficult

“Anticipation Problem”

Usually, parametricity states a relation between two expressions on the same type

(i.e. homogeneous parametricity)

Heterogeneous parametricity can relate two expressions to each other directly
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Tabareau et al. 2019



2. Limits of  parametricity in an Intensional Type Theory

“Computation Problem”

Parametrically-related functions behave the same propositionally but not definitionally

(i.e. parametrically related definitions are not equal by conversion)

Univalence to the rescue!
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Tabareau et al. 2019



Univalence

Isomorphic types are treated the "same" (isomorphic objects enjoy same structural properties)

Every equivalence (isomorphism) between types A and B leads to an identity proof Id (A, B)
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Tabareau et al. 2019

Isomorphic 
types are equal

Voevodsky (2009)



Type Equivalence (Isomorphism)

f : A → B is an equivalence iff there exists a function g : B → A paired with proofs that f and g 
are inverses of each other. 

∀a : A, Eq(g(f(a)), a)

∀b : B, Eq(f(g(b)), b)

Type equivalence  (A ≃ B)

Two types A and B are equivalent to each other iff there exists a function f : A → B that is 
an equivalence.
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Tabareau et al. 2019



Univalence

For any two types A and B, the canonical map Id(A,  B) → (A ≃ B) is an equivalence.

Indiscernibility of Equivalents

For any P: Type → Type, and any two types A and B such that A ≃ B, we have P A ≃ P B

Immediate transport using univalence

For any P: Type → Type, and any two types A and B such that A ≃ B, 

there exists a function transport     ↑■ : P A → P B
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Tabareau et al. 2019

All about coercions!



N.B. : Realizing Univalence

● Homotopy Type Theory: axiomatized univalence
● Use of axioms breaks computational adequacy (“stuck terms”, “canonicity”)

“All closed terms of a natural number type compute numerals”

● Alternative : Cubical Type Theory
○ De Morgan Cubical Type Theory
○ Cartesian Cubical Type Theory

● Tabareau et al.’s approach painstakingly maneuvers coercions between typeclasses that simulate 
computational rules that are at the foot of cubical type theory
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Tabareau et al. 2019

(we’ll brush on it a little later)



Univalent Parametricity

● Restriction of parametricity to relations that correspond to equivalences

relation R : A → B → Typei

equivalence e : A ≃ B

coherence condition Π a b . ( R a b ) ≃ ( a = ↑e b )
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Tabareau et al. 2019



Univalent Parametricity in Action

Definition square (x : nat) : nat := x * x.

Definition squareBin■: Bin → Bin := ↑■ square. (* Transport using univalence *)

Check eq_refl : squareBin■ = (fun x:Bin ⇒ ↑■ (square (↑■ x))). (* Inefficient *)

Definition univrel_mult : mult ≈ multBin.  (* Additional proof *)

Definition squareBin□: Bin → Bin := ↑□ square. (* Transport using parametricity *)

Check eq_refl : squareBin□ = (fun x ⇒ (x * x)%Bin). (* Infers new univalent relations 
*)
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Tabareau et al. 2019
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     Krishnaswami & Dreyer 2013

Internalizing Representation Independence with Univalence

Angiuli et al. 2021



Cubical Type Theory

Axiomatized univalence bites the programmer’s neck

Stuck terms that are unable to reduce (i.e. lacks computational adequacy)

Cubical type theory: constructive interpretation of univalence

Path types: information about how two types are equal
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Tabareau et al. 2019Angiuli et al. 2021



Cubical Type Theory

Path Types

Maps out of an interval type I which has two elements i0: I and i1: I that are behaviorally 
equal but not definitionally equal

● Behavioral equality: no function f  : I → A can distinguish the elements

PathP : (A : I → Type l) → A i0 → A i1 → Type l
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Tabareau et al. 2019Angiuli et al. 2021

specifies the behavior of their elements at i0 and i1

homogeneous equality using path type_ {A = A} x y = PathP (λ _ → A) x y_



Higher Inductive Types

Each constructor carries paths between elements

Set quotients quotient a type with an arbitrary relation (resulting in a set).
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Tabareau et al. 2019Angiuli et al. 2021



Queue up!

Let’s say we want a Queue implementation with a standard dequeue and enqueue operation.

Basic implementation: ListQueue

ListQueue (A : Type) → Queue A 

ListQueue A = queue (List A) [] _::_ last
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Faster, faster..

Okasaki’s BatchedQueue representation: 

The queue is a tuple Q = List A × List A (first queue for enqueue, second queue for dequeue)

 (amortized constant-time!)

BatchedQueue : (A : Type) → Queue A 

BatchedQueue A = queue (List A x List A) ([], []) 

(fun x (xs, ys) → fastcheck (x :: xs, ys)) 

(fun {(_, []) → nothing ; (xs, x :: ys) → just (fastcheck (xs, ys), x)}) 
where 

fastcheck : {A : Type} → List A * List A → List A * List A 

fastcheck (xs, ys) = if isEmpty ys then ([], reverse xs ) else (xs, ys)
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Structure-preserving Correspondence

appendReverse : {A : Type} → BatchedQueue A Q → ListQueue A Q 

appendReverse (xs, ys) = xs ++ reverse ys

Structure-preserving — preserves empty, and commutes with enqueue and dequeue

Thus, ListQueue and BatchedQueue are contextually equivalent!

What’s the problem?

([], [1,0]) and ([0], [1]) maps to [0, 1] Not an isomorphism!
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Structure-preserving Equivalence

A structure is a function S : Type → Type, and an S-structure is a dependent pair of a type and 
its application to the structure.

An S-structure-preserving equivalence StrEquiv is a term with two S-structures and an 
equivalence between their underlying types.
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Structure Identity Principle

Univalent Structure (S, ι)

Structure Identity Principle (SIP)
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Tabareau et al. 2019Angiuli et al. 2021



Using the SIP

Given a set A fixed, the raw queue structure contains the empty queue, and the 
enqueue/dequeue functions.

Set quotients can identify any two BatchedQueues sent to the same list by appendReverse.
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Using the SIP

The structure-map between the structures, appendReverse, can be extended to an equivalence 
BatchedQueueHIT ≃ List A which induces a raw queue structure on BatchedQueueHIT

Finally, an appeal to the SIP will transfer any ListQueue axioms to the quotiented 
BatchedQueue operations
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Recall Structure Identity Principle (SIP)
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Induced Equivalence from QPERs
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     Krishnaswami & Dreyer 2013

Canonically Induced PER



Global Context for Univalent Parametricity
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Tabareau et al. 2019

Two constants
Witness that two constants are 

parametrically related



Universes
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Tabareau et al. 2019


