
Freedom for Proofs!
Representation Independence is More than Parametricity

Irene Yoon

Modularity in programming

● Software should have correct abstractions that can compose
● “Type structure is a syntactic discipline for enforcing levels of abstraction” - John Reynolds

● Representation Independence
○ Programmers can give different implementations for the same abstract interface
○ e.g. Two different implementations of a queue can be interchangeable

2

Parametricity

● Parametrically polymorphic functions behave uniformly in their type arguments
○ Strachey (1967) / Lambek(1972) “generality”

● Reynold’s relational parametricity (1983)
○ System F (polymorphic lambda-calculus)
○ Logical relations: related inputs lead to related outputs

● Mitchell’s representation independence and data abstraction (1986)
○ Applies parametricity to prove representation independence for existential types

● Wadler’s free theorems (1989)
○ “Every function of the same type satisfies the same theorem”

3
..beyond System F!

Dependently-Typed Programming

● Good: Rich program specifications
● Not so good: Notoriously labor-intensive

How can we bring about representation independence to dependently-typed programming?

4

Nuprl

5

Krishnaswami
& Dreyer 2013

Tabareau et al.
2019

Angiuli et al.
2021

Bird’s Eye View and expectations

Marriage of Univalence and Parametricity

Internalizing Representation Independence with Univalence

Internalizing Relational Parametricity in the
Extensional Calculus of Constructions

λ

6

 Krishnaswami & Dreyer 2013

Internalizing Relational Parametricity in the Extensional
Calculus of Constructions

7

Internalized parametricity with
realizability semantics

Extensional Calculus of
Constructions

1. Relationally parametric model
2. Adding semantically

well-typed terms as axioms
with computational content

Main Technique Type theory

Krishnaswami
& Dreyer 2013

Tabareau et al.
2019

Angiuli et al.
2021

Result

Bird’s Eye View

Marriage of Univalence and Parametricity

Internalizing Representation Independence with Univalence

Parametric Type Theories

● Abstraction Theorem

● Internalized parametricity: Abstraction Theorem can be stated and proved within type
theory

● Externalized parametricity: Abstraction Theorem is stated through a meta-theoretic
translation.

8

Bernardy et al. [2010, 2012a, 2012b, 2013, 2015]

 Krishnaswami & Dreyer 2013

Equality in Dependent Type Theory

Judgmental Equality

Set of equality rules that are (inductively) defined

Definitional Equality type-checker silently coerces between definitionally equal types

Propositional Equality

Proof of equality between two elements

9

 Krishnaswami & Dreyer 2013

Type-checking requires checking term equality

Equality in Type Theory

Extensional type theory : equality reflection

Uniqueness of Identity Proofs (UIP) : Any two elements of

Streicher’s Axiom K

10

are equal.

 Krishnaswami & Dreyer 2013

For the context of parametricity: Allow coercions between parametrically related terms!

Realizability Semantics

● Taking the Brouwer–Heyting–Kolmogorov (BHK) Interpretation to heart
○ The interpretation of a logical formula is the proof (realizer)
○ e.g. P /\ Q interprets to <a, b> where a is a proof of P and b is a proof of Q

● What if you have a formula which you have a proof of…
○ But your typing rules do not “type-check” the formula?

● It must be true! Add the formula to the theory!

11

Syntactic
formalisms

cannot show all
truths!

Gödel's
Incompleteness
Theorem
(1931)

 Krishnaswami & Dreyer 2013

Realizability-style Model

● Interprets types as relations (logical relations)
● Quasi-PERs (QPERs) to show heterogeneous equivalences

○ Typically, the interpretation is a partial equivalence relation (aka PER, a symmetric and transitive relation)
○ Symmetry requires homogeneity (relation must relate two terms of equal types)

12

 Krishnaswami & Dreyer 2013

● Can use a single relational model for relating terms at different types
○ (Instead of requiring a PER model of types and a relational model between PERs)

Internalizing relational parametricity

13

 Krishnaswami & Dreyer 2013

● Relationally parametric model of an extensional Calculus of Constructions
● Realizability-style interpretation of types

○ Types interpreted as relations
○ Realizer: Exhibit a term that is related to itself at the type (semantically well-typed term)

● Can add “validated axioms” to the theory which have realizers
relational interpretation
realizer e
axiom X

Adding axioms with computational content to theory

● Dependent pairs (Σ-types)
● Induction principle for natural numbers
● Quotient types

The axiom may not be syntactically well-typed, but the realizer of the axiom

(i.e. the proof of the axiom) is semantically well-typed!

14

 Krishnaswami & Dreyer 2013

15

Internalized parametricity with
realizability semantics

Extensional Calculus of
Constructions

1. Relationally parametric model
2. Adding semantically

well-typed terms as axioms
with computational content

Type theory

Krishnaswami
& Dreyer 2013

Tabareau et al.
2019

Angiuli et al.
2021

Result

Bird’s Eye View

Marriage of Univalence and Parametricity

Internalizing Representation Independence with Univalence

Main Technique

16

 Krishnaswami & Dreyer 2013

Marriage of Univalence and Parametricity

Tabareau et al. 2019

Goal: Automated Proof Transport

Given two implementation of natural numbers, we should be able to reuse proofs between them

17

Tabareau et al. 2019

Inductive nat : Set :=
| O : nat
| S : nat → nat

Inductive Bin : Set :=
| OBin : Bin
| posBin : positive → nat

Inductive positive : Set :=
| xI : positive → positive
| xO : positive → positive
| xH : positive

Easy to reason about Efficient

Goal: Automated Proof Transport

Given two implementation of natural numbers, we should be able to reuse proofs between them

18

Tabareau et al. 2019

Lemma plus_comm : ∀ n m : nat, n + m = m + n.
Proof.

...
Qed.

Lemma plusBin_comm : ∀ n m : Bin, n + m = m + n.
Proof.

transport plus_comm. (* automatically inferred *)
Qed.

Using parametricity for refinement

Given two implementation of natural numbers, we should be able to reuse proofs between them

19

Tabareau et al. 2019

Lemma plus_comm : ∀ n m : nat, n + m = m + n.
Proof.

...
Qed.

Lemma plusBin_comm : ∀ n m : Bin, n + m = m + n.
Proof.

transport plus_comm. (* automatically inferred *)
Qed.

1. Specifying a common abstract interface a priori can be difficult

“Anticipation Problem”

Usually, parametricity states a relation between two expressions on the same type

(i.e. homogeneous parametricity)

Heterogeneous parametricity can relate two expressions to each other directly

20

Tabareau et al. 2019

2. Limits of parametricity in an Intensional Type Theory

“Computation Problem”

Parametrically-related functions behave the same propositionally but not definitionally

(i.e. parametrically related definitions are not equal by conversion)

Univalence to the rescue!

21

Tabareau et al. 2019

Univalence

Isomorphic types are treated the "same" (isomorphic objects enjoy same structural properties)

Every equivalence (isomorphism) between types A and B leads to an identity proof Id (A, B)

22

Tabareau et al. 2019

Isomorphic
types are equal

Voevodsky (2009)

Type Equivalence (Isomorphism)

f : A → B is an equivalence iff there exists a function g : B → A paired with proofs that f and g
are inverses of each other.

∀a : A, Eq(g(f(a)), a)

∀b : B, Eq(f(g(b)), b)

Type equivalence (A ≃ B)

Two types A and B are equivalent to each other iff there exists a function f : A → B that is
an equivalence.

23

Tabareau et al. 2019

Univalence

For any two types A and B, the canonical map Id(A, B) → (A ≃ B) is an equivalence.

Indiscernibility of Equivalents

For any P: Type → Type, and any two types A and B such that A ≃ B, we have P A ≃ P B

Immediate transport using univalence

For any P: Type → Type, and any two types A and B such that A ≃ B,

there exists a function transport ↑■ : P A → P B
24

Tabareau et al. 2019

All about coercions!

N.B. : Realizing Univalence

● Homotopy Type Theory: axiomatized univalence
● Use of axioms breaks computational adequacy (“stuck terms”, “canonicity”)

“All closed terms of a natural number type compute numerals”

● Alternative : Cubical Type Theory
○ De Morgan Cubical Type Theory
○ Cartesian Cubical Type Theory

● Tabareau et al.’s approach painstakingly maneuvers coercions between typeclasses that simulate
computational rules that are at the foot of cubical type theory

25

Tabareau et al. 2019

(we’ll brush on it a little later)

Univalent Parametricity

● Restriction of parametricity to relations that correspond to equivalences

relation R : A → B → Typei

equivalence e : A ≃ B

coherence condition Π a b . (R a b) ≃ (a = ↑e b)

26

Tabareau et al. 2019

Univalent Parametricity in Action

Definition square (x : nat) : nat := x * x.

Definition squareBin■: Bin → Bin := ↑■ square. (* Transport using univalence *)

Check eq_refl : squareBin■ = (fun x:Bin ⇒ ↑■ (square (↑■ x))). (* Inefficient *)

Definition univrel_mult : mult ≈ multBin. (* Additional proof *)

Definition squareBin□: Bin → Bin := ↑□ square. (* Transport using parametricity *)

Check eq_refl : squareBin□ = (fun x ⇒ (x * x)%Bin). (* Infers new univalent relations
*)

27

Tabareau et al. 2019

28

Internalized parametricity with
realizability semantics

Extensional Calculus of
Constructions

1. Relationally parametric model
2. Adding semantically

well-typed terms as axioms
with computational content

Type theory

Krishnaswami
& Dreyer 2013

Tabareau et al.
2019

Angiuli et al.
2021

Result

Bird’s Eye View

Internalizing Representation Independence with Univalence

Main Technique

Univalent parametricity
(Externalized parametricity

with univalence)

Calculus of Inductive
Constructions (CIC) with

axiomatized univalence

Automated proof transport
between isomorphic

representations

29

 Krishnaswami & Dreyer 2013

Internalizing Representation Independence with Univalence

Angiuli et al. 2021

Cubical Type Theory

Axiomatized univalence bites the programmer’s neck

Stuck terms that are unable to reduce (i.e. lacks computational adequacy)

Cubical type theory: constructive interpretation of univalence

Path types: information about how two types are equal

30

Tabareau et al. 2019Angiuli et al. 2021

Cubical Type Theory

Path Types

Maps out of an interval type I which has two elements i0: I and i1: I that are behaviorally
equal but not definitionally equal

● Behavioral equality: no function f : I → A can distinguish the elements

PathP : (A : I → Type l) → A i0 → A i1 → Type l

31

Tabareau et al. 2019Angiuli et al. 2021

specifies the behavior of their elements at i0 and i1

homogeneous equality using path type_ {A = A} x y = PathP (λ _ → A) x y_

Higher Inductive Types

Each constructor carries paths between elements

Set quotients quotient a type with an arbitrary relation (resulting in a set).

32

Tabareau et al. 2019Angiuli et al. 2021

Queue up!

Let’s say we want a Queue implementation with a standard dequeue and enqueue operation.

Basic implementation: ListQueue

ListQueue (A : Type) → Queue A

ListQueue A = queue (List A) [] _::_ last

33

Tabareau et al. 2019Angiuli et al. 2021

Faster, faster..

Okasaki’s BatchedQueue representation:

The queue is a tuple Q = List A × List A (first queue for enqueue, second queue for dequeue)

 (amortized constant-time!)

BatchedQueue : (A : Type) → Queue A

BatchedQueue A = queue (List A x List A) ([], [])

(fun x (xs, ys) → fastcheck (x :: xs, ys))

(fun {(_, []) → nothing ; (xs, x :: ys) → just (fastcheck (xs, ys), x)})
where

fastcheck : {A : Type} → List A * List A → List A * List A

fastcheck (xs, ys) = if isEmpty ys then ([], reverse xs) else (xs, ys)
34

Tabareau et al. 2019Angiuli et al. 2021

Structure-preserving Correspondence

appendReverse : {A : Type} → BatchedQueue A Q → ListQueue A Q

appendReverse (xs, ys) = xs ++ reverse ys

Structure-preserving — preserves empty, and commutes with enqueue and dequeue

Thus, ListQueue and BatchedQueue are contextually equivalent!

What’s the problem?

([], [1,0]) and ([0], [1]) maps to [0, 1] Not an isomorphism!

35

Tabareau et al. 2019Angiuli et al. 2021

Structure-preserving Equivalence

A structure is a function S : Type → Type, and an S-structure is a dependent pair of a type and
its application to the structure.

An S-structure-preserving equivalence StrEquiv is a term with two S-structures and an
equivalence between their underlying types.

36

Tabareau et al. 2019Angiuli et al. 2021

Structure Identity Principle

Univalent Structure (S, ι)

Structure Identity Principle (SIP)

37

Tabareau et al. 2019Angiuli et al. 2021

Using the SIP

Given a set A fixed, the raw queue structure contains the empty queue, and the
enqueue/dequeue functions.

Set quotients can identify any two BatchedQueues sent to the same list by appendReverse.

38

Tabareau et al. 2019Angiuli et al. 2021

Using the SIP

The structure-map between the structures, appendReverse, can be extended to an equivalence
BatchedQueueHIT ≃ List A which induces a raw queue structure on BatchedQueueHIT

Finally, an appeal to the SIP will transfer any ListQueue axioms to the quotiented
BatchedQueue operations

39

Tabareau et al. 2019Angiuli et al. 2021

Recall Structure Identity Principle (SIP)

40

Internalized parametricity with
realizability semantics

Extensional Calculus of
Constructions

Adding semantically
well-typed terms and free

theorems

Univalent parametricity
(Externalized parametricity

with univalence)

Calculus of Inductive
Constructions (CIC) with

axiomatized univalence

Automated proof transport
between isomorphic

representations

Univalence
(Structure Identity Principle)

De Morgan
Cubical Type Theory

Proof transport between
non-isomorphic

representations

Type theory

Krishnaswami
& Dreyer 2013

Tabareau et al.
2019

Angiuli et al.
2021

Result

Bird’s Eye View
Main Technique

Induced Equivalence from QPERs

41

 Krishnaswami & Dreyer 2013

Canonically Induced PER

Global Context for Univalent Parametricity

42

Tabareau et al. 2019

Two constants
Witness that two constants are

parametrically related

Universes

43

Tabareau et al. 2019

