Freedom for Proofs!

Representation Independence is More than Parametricity

Irene Yoon

Modularity in programming

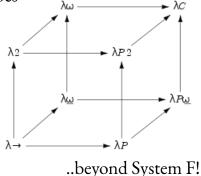
- Software should have correct **abstractions** that can **compose**
- *"Type structure is a syntactic discipline for enforcing levels of abstraction" John Reynolds*

• Representation Independence

- Programmers can give <u>different implementations</u> for the same abstract interface
- e.g. Two different implementations of a queue can be interchangeable

Parametricity $\forall \alpha. \tau$

- Parametrically polymorphic functions behave uniformly in their type arguments
 - Strachey (1967) / Lambek(1972) "generality"
- Reynold's relational parametricity (1983)
 - System F (polymorphic lambda-calculus)
 - Logical relations: related inputs lead to related outputs
- Mitchell's representation independence and data abstraction (1986)
 - Applies parametricity to prove representation independence for existential types
- Wadler's *free theorems* (1989)
 - "Every function of the same type satisfies the same theorem"



Dependently-Typed Programming

- *Good*: Rich program specifications
- *Not so good*: Notoriously labor-intensive

How can we bring about representation independence to dependently-typed programming?

Bird's Eye View and expectations $^\lambda$

Internalizing Relational Parametricity in the Krishnaswami **Extensional Calculus of Constructions** & Dreyer 2013 Tabareau et al. Marriage of Univalence and Parametricity 2019 Angiuli et al. Internalizing Representation Independence with Univalence 2021

Internalizing Relational Parametricity in the Extensional Calculus of Constructions

Bird's Eye View

	Main Technique	Type theory	Result
Krishnaswami & Dreyer 2013	Internalized parametricity with <i>realizability semantics</i>	Extensional Calculus of Constructions	1. Relationally parametric model 2. Adding semantically well-typed terms as axioms with computational content
Tabareau et al. 2019	Marriage of Univalence and Parametricity		
Angiuli et al. 2021	Internalizing Representation Independence with Univalence		

Parametric Type Theories

Bernardy et al. [2010, 2012a, 2012b, 2013, 2015]

• Abstraction Theorem

If
$$\Gamma \vdash t : A$$
 then $\llbracket \Gamma \rrbracket \models \llbracket t \rrbracket : \llbracket A \rrbracket t t$

- *Internalized parametricity*: Abstraction Theorem can be stated and proved *within* type theory
- *Externalized parametricity*: Abstraction Theorem is stated through a meta-theoretic translation.

Equality in Dependent Type Theory

Type-checking requires checking term equality

<u>Judgmental Equality</u> $\Gamma \vdash A = A' \ type$

Set of equality rules that are (inductively) defined

<u>Definitional Equality</u> type-checker silently coerces between definitionally equal types

<u>Propositional Equality</u> $Eq_A(x, y)$

Proof of equality between two elements

Equality in Type Theory

Extensional type theory : equality reflection

$$\frac{p:\mathsf{Eq}_A(x,y)}{x=y}$$

Uniqueness of Identity Proofs (UIP) : Any two elements of $Eq_A(x, y)$ are equal. Streicher's *Axiom K*

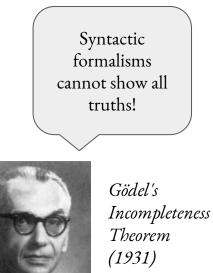
For the context of parametricity: Allow coercions between parametrically related terms!

Realizability Semantics

- Taking the Brouwer–Heyting–Kolmogorov (BHK) Interpretation to heart
 - The interpretation of a logical formula is the **proof (realizer)**
 - \circ e.g. P /\ Q interprets to <a, b> where a is a proof of P and b is a proof of Q

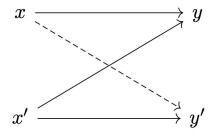
- What if you have a formula which you have a proof of...
 - But your typing rules do not "type-check" the formula?

• It must be true! Add the formula to the theory!



Realizability-style Model

- Interprets types as relations (*logical relations*)
- Quasi-PERs (QPERs) to show heterogeneous equivalences
 - Typically, the interpretation is a partial equivalence relation (aka PER, a symmetric and transitive relation)
 - Symmetry requires homogeneity (relation must relate two terms of equal types)



if $(x, y) \in R$, $(x', y') \in R$, and $(x', y) \in R$, then $(x, y') \in R$.

Can use a single relational model for relating terms at different types
 (Instead of requiring a PER model of types and a relational model between PERs)

Internalizing relational parametricity

- Relationally parametric model of an <u>extensional</u> Calculus of Constructions
- <u>Realizability-style</u> interpretation of types
 - Types interpreted as relations
 - Realizer: Exhibit a term that is related to itself at the type (semantically well-typed term)
- Can add "validated axioms" to the theory which have realizers

$$(e, e) \in \llbracket X \rrbracket$$
 relational interpretation \llbracket]
realizer e
axiom X

Adding axioms with computational content to theory

- Dependent pairs (Σ-types)
- Induction principle for natural numbers
- Quotient types

The axiom may not be syntactically well-typed, but the realizer of the axiom (i.e. the proof of the axiom) is semantically well-typed!

Bird's Eye View

	Main Technique	Type theory	Result
Krishnaswami & Dreyer 2013	Internalized parametricity with <i>realizability semantics</i>	Extensional Calculus of Constructions	1. Relationally parametric model 2. Adding semantically well-typed terms as axioms with computational content
Tabareau et al. 2019	Marriage of Univalence and Parametricity		
Angiuli et al. 2021	Internalizing Representation Independence with Univalence		

Marriage of Univalence and Parametricity

Goal: Automated Proof Transport

Given two implementation of natural numbers, we should be able to *reuse* proofs between them

```
Inductive nat : Set :=
| 0 : nat
| S : nat → nat
```

```
Inductive Bin : Set := | 0_{Bin} : Bin | pos_{Bin} : positive \rightarrow nat
```

Inductive positive : Set := $| xI : positive \rightarrow positive | x0 : positive \rightarrow positive | xH : positive$

Efficient

Goal: Automated Proof Transport

Given two implementation of natural numbers, we should be able to *reuse* proofs between them

```
Lemma plus_comm : ∀ n m : nat, n + m = m + n.
Proof.
Qed.
Lemma plus<sub>Bin</sub>_comm : ∀ n m : Bin, n + m = m + n.
Proof.
transport plus_comm. (* automatically inferred *)
Qed.
```

Using parametricity for refinement

Given two implementation of natural numbers, we should be able to *reuse* proofs between them

```
Lemma plus_comm : ∀ n m : nat, n + m = m + n.
Proof.
Qed.
Lemma plus<sub>Bin</sub>_comm : ∀ n m : Bin, n + m = m + n.
Proof.
transport plus_comm. (* automatically inferred *)
Qed.
```

1. Specifying a common abstract interface <u>a priori</u> can be difficult

"Anticipation Problem"

Usually, parametricity states a relation between two expressions on the same type

(i.e. homogeneous parametricity)

If
$$\Gamma \vdash t : A$$
 then $\llbracket \Gamma \rrbracket \models \llbracket t \rrbracket : \llbracket A \rrbracket t t$

Heterogeneous parametricity can relate two expressions to each other *directly*

If $\Gamma \vdash t : A$ and $[\Gamma] \vdash [t] : [A]$ then $\llbracket \Gamma \rrbracket \models \llbracket t \rrbracket : \llbracket A \rrbracket t [t]$

2. Limits of parametricity in an Intensional Type Theory

"Computation Problem"

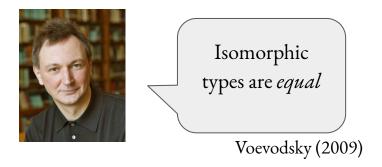
Parametrically-related functions behave the same *propositionally* but not *definitionally*

(i.e. parametrically related definitions are not equal by conversion)

Univalence to the rescue!

Univalence

Isomorphic types are treated the "same" (isomorphic objects enjoy same structural properties)



Every equivalence (isomorphism) between types A and B leads to an identity proof Id (A, B)

Type Equivalence (Isomorphism)

 $f: A \rightarrow B$ is an *equivalence* iff there exists a function $g: B \rightarrow A$ paired with proofs that f and g are inverses of each other.

 $\forall \, a : A, \mathsf{Eq}(g(f(a)), a)$

 \forall b : B, Eq(f(g(b)), b)

<u>Type equivalence</u> $(A \simeq B)$

Two types A and B are equivalent to each other iff there exists a function $f : A \to B$ that is an equivalence.

Univalence

All about coercions!

For any two types A and B, the canonical map $Id(A, B) \rightarrow (A \simeq B)$ is an equivalence.

Indiscernibility of Equivalents

For any P: Type \rightarrow Type, and any two types A and B such that A \simeq B, we have P A \simeq P B

Immediate *transport* using univalence

For any P: Type \rightarrow Type, and any two types A and B such that A \simeq B,

there exists a function **transport** \uparrow : $P A \rightarrow P B$

N.B. : Realizing Univalence

- Homotopy Type Theory: *axiomatized* univalence •
- Use of axioms breaks **computational adequacy** ("stuck terms", "canonicity") •

"All closed terms of a natural number type compute numerals"

Alternative : Cubical Type Theory De Morgan Cubical Type Theory

Ο

(we'll brush on it a little later)

Cartesian Cubical Type Theory Ο

Tabareau et al.'s approach painstakingly maneuvers coercions between typeclasses that simulate • computational rules that are at the foot of cubical type theory

Univalent Parametricity

• Restriction of parametricity to relations that correspond to **equivalences**

 $[\![\mathsf{Type}_i]\!] \mathrel{A} B$

relation	$\mathbf{R}: \mathbf{A} \to \mathbf{B} \to \mathbf{Type}_{\mathbf{i}}$
equivalence	$\mathbf{e}:\mathbf{A}\simeq\mathbf{B}$
coherence condition	$\Pi a b . (R a b) \simeq (a = \uparrow_c b)$

 $\llbracket \mathsf{Type}_i \rrbracket A \ B \triangleq \Sigma(R : A \to B \to \mathsf{Type}_i)(e : A \simeq B). \ \Pi a \ b. \ (R \ a \ b) \simeq (a = \uparrow_e b)$

Univalent Parametricity in Action

Definition square (x : nat) : nat := x * x.

Definition square_{Bin}: Bin \rightarrow Bin := \uparrow_{\blacksquare} square. (* Transport using univalence *)

Check eq_refl : square = (fun x:Bin $\Rightarrow \uparrow_{\bullet}$ (square (\uparrow_{\bullet} x))). (* Inefficient *)

Definition univrel_mult : mult \approx mult_{Bin.} (* Additional proof *)

Definition square_{BinD}: Bin \rightarrow Bin := \uparrow_{D} square. (* Transport using parametricity *) **Check** eq_refl : square_{BinD} = (fun x \Rightarrow (x * x)%Bin). (* Infers new univalent relations *)

Bird's Eye View

	Main Technique	Type theory	Result
Krishnaswami & Dreyer 2013	Internalized parametricity with <i>realizability semantics</i>	Extensional Calculus of Constructions	1. Relationally parametric model 2. Adding semantically well-typed terms as axioms with computational content
Tabareau et al. 2019	Univalent parametricity (Externalized parametricity with univalence)	Calculus of Inductive Constructions (CIC) with axiomatized univalence	Automated proof transport between isomorphic representations
Angiuli et al. 2021	Internalizing Represent	ation Independence wit	th Univalence

Internalizing Representation Independence with Univalence

Cubical Type Theory

Axiomatized univalence bites the programmer's neck

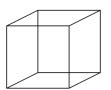
Stuck terms that are unable to reduce (i.e. lacks computational adequacy)

Cubical type theory: *constructive interpretation* of univalence

<u>Path types</u>: information about how two types are equal

Cubical Type Theory

Path Types



Maps out of an interval type **I** which has two elements **i0: I** and **i1: I** that are *behaviorally equal* but *not definitionally equal*

• <u>Behavioral equality</u>: no function $f : I \rightarrow A$ can distinguish the elements

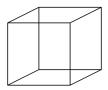
PathP : $(A : I \rightarrow Type \ l) \rightarrow A \ i0 \rightarrow A \ i1 \rightarrow Type \ l$

specifies the behavior of their elements at i0 and i1

```
\_\equiv_{A = A} x y = PathP (\lambda \_ \rightarrow A) x y
```

homogeneous equality using path type

Higher Inductive Types



Each constructor carries *paths between elements*

<u>Set quotients</u> quotient a type with an arbitrary relation (resulting in a set).

$$\begin{array}{l} \mathsf{data}\ _/_\{A:\mathsf{Type}\} \to \{R:A \to A \to \mathsf{Type}\} \to \mathsf{Type} \text{ where} \\ [_]:\{a:A\} \to A/R \\ \mathsf{eq}/:\{a\ b:A\} \to \{r:R\ a\ b\} \to [a] \equiv [b] \\ \mathsf{squash}/:\mathsf{isSet}(A/R). \end{array}$$

Queue up!

Let's say we want a **Queue** implementation with a standard **dequeue** and **enqueue** operation.

Basic implementation: ListQueue

```
ListQueue (A : Type) \rightarrow Queue A
ListQueue A = queue (List A) [] _::_ last
```

Faster, faster..

Okasaki's **BatchedQueue** representation:

The queue is a tuple $\mathbf{Q} = \mathbf{List} \mathbf{A} \times \mathbf{List} \mathbf{A}$ (first queue for *enqueue*, second queue for *dequeue*) (amortized constant-time!)

```
BatchedQueue : (A : Type) → Queue A
```

```
BatchedQueue A = queue (List A x List A) ([], [])
```

 $(fun x (xs, ys) \rightarrow fastcheck (x :: xs, ys))$

(fun {(_, []) \rightarrow nothing ; (xs, x :: ys) \rightarrow just (fastcheck (xs, ys), x)}) where

```
fastcheck : {A : Type} \rightarrow List A * List A \rightarrow List A * List A
fastcheck (xs, ys) = if isEmpty ys then ([], reverse xs ) else (xs, ys)
```

Structure-preserving Correspondence

appendReverse : {A : Type} \rightarrow BatchedQueue A Q \rightarrow ListQueue A Q

appendReverse (xs, ys) = xs ++ reverse ys

<u>Structure-preserving</u> – preserves **empty**, and commutes with **enqueue** and **dequeue**

Thus, **ListQueue** and **BatchedQueue** are contextually equivalent!

What's the problem?

([], [1,0]) and ([0], [1]) maps to [0, 1]

Not an isomorphism!

Structure-preserving Equivalence

A <u>structure</u> is a function S : Type \rightarrow Type, and an *S*-structure is a dependent pair of a type and its application to the structure.

 $\mathsf{TypeWithStr}\;\mathsf{S}=\Sigma[X\in\mathsf{Type}](S\;X)$

An <u>S-structure-preserving</u> equivalence StrEquiv is a term with two S-structures and an equivalence between their underlying types.

 $\begin{array}{l} \mathsf{StrEquiv}\ S = (A\ B:\mathsf{TypeWithStr}\ S) \to \mathsf{fst}\ A \simeq \mathsf{fst}\ B \to \mathsf{Type}\\ A \simeq [\ \iota\]B = \Sigma[e \in \mathsf{fst}\ A \simeq \mathsf{fst}\ B](\iota\ A\ B\ e) \qquad \quad \iota:\mathsf{StrEquiv}\ S \end{array}$

Structure Identity Principle

 $\mathsf{ua}: \{A \ B: \mathsf{Type}\} \to A \simeq B \to A \equiv B$

$$\begin{split} \mathsf{UnivalentStr}\;S\;\iota &= \{A\;B:\mathsf{TypeWithStr}\;S\}(e:\mathsf{fst}\;A\simeq\mathsf{fst}\;B)\\ &\to (\iota\;A\;B\;e)\simeq\mathsf{PathP}(\lambda i\to S(\mathsf{ua}\;e\;i))(\mathsf{snd}\;A)(\mathsf{snd}\;B) \end{split}$$

Structure Identity Principle (SIP)

<u>Univalent Structure</u> (S, ι)

For S : Type \rightarrow Type and ι : StrEquiv S, we have a term SIP : UnivalentStr S $\iota \rightarrow$ (A B : TypeWithStr S) \rightarrow (A \simeq [ι] B) \simeq (A \equiv B)

Using the SIP

Given a set **A** fixed, the raw queue structure contains the empty queue, and the enqueue/dequeue functions.

$$\mathsf{RawQueueStructure}\ X = X * (A \to X \to X) * (X \to \mathsf{Maybe}(X * A))$$

Set quotients can identify any two **BatchedQueue**s sent to the same list by appendReverse.

data BatchedQueueHIT : Type where $Q\langle _, _\rangle$: List $A \to \text{List } A \to \text{BatchedQueueHIT}$ tilt : $\forall xs \ ys \ a \to Q\langle xs \ _{++} [a], \ ys \rangle \equiv Q\langle xs, \ ys \ _{++} [a] \rangle$ squash : isSet BatchedQueueHIT

Using the SIP

The structure-map between the structures, **appendReverse**, can be extended to an equivalence **BatchedQueueHIT** ~ List A which induces a raw queue structure on **BatchedQueueHIT**

Finally, an appeal to the SIP will transfer any **ListQueue** axioms to the quotiented **BatchedQueue** operations

Recall Structure Identity Principle (SIP)

For S : Type \rightarrow Type and ι : StrEquiv S, we have a term SIP : UnivalentStr S $\iota \rightarrow$ (A B : TypeWithStr S) \rightarrow (A \simeq [ι] B) \simeq (A \equiv B)

Bird's Eye View

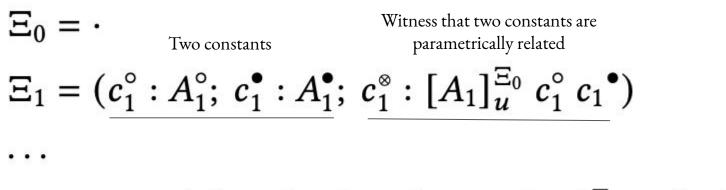
	Main Technique	Type theory	Result
Krishnaswami & Dreyer 2013	Internalized parametricity with <i>realizability semantics</i>	Extensional Calculus of Constructions	Adding semantically well-typed terms and free theorems
Tabareau et al. 2019	Univalent parametricity (Externalized parametricity with univalence)	Calculus of Inductive Constructions (CIC) with axiomatized univalence	Automated proof transport between isomorphic representations
Angiuli et al. 2021	Univalence (Structure Identity Principle)	De Morgan Cubical Type Theory	Proof transport between non-isomorphic representations

Induced Equivalence from QPERs

Canonically Induced PER

Every QPER $Q \subseteq R \times S$ induces an equivalence relation $\sim_Q \subseteq Q \times Q$ (and hence a PER on $R \times S$), defined as $(a_1, a_2) \sim_Q (b_1, b_2)$ iff the zigzag $\{(a_1, a_2), (b_1, b_2), (a_1, b_2), (b_1, a_2) \subseteq Q\}$.

Global Context for Univalent Parametricity



$$\Xi_n = \Xi_{n-1}, (c_n^{\circ} : A_n^{\circ}; c_n^{\bullet} : A_n^{\bullet}; c_n^{\otimes} : [A_n]_u^{\Xi_{n-1}} c_n^{\circ} c_n^{\bullet})$$

Universes

 $\llbracket \mathsf{Type}_i \rrbracket A \ B \triangleq \Sigma(R : A \to B \to \mathsf{Type}_i)(e : A \simeq B). \ \Pi a \ b. \ (R \ a \ b) \simeq (a = \uparrow_e b)$

$$\begin{split} [\mathsf{Type}_i]_u : \llbracket [\mathsf{Type}_{i+1}] \rrbracket_u \; \mathsf{Type}_i \; & \equiv \\ & \Sigma(R : \mathsf{Type}_i \to \mathsf{Type}_i \to \mathsf{Type}_{i+1})(e : \mathsf{Type}_i \simeq \mathsf{Type}_i). \; \Pi a \; b.(R \; a \; b) \simeq (a = \uparrow_e b). \end{split}$$

$$[\mathsf{Type}_i]_u \triangleq (\lambda \ (A \ B : \mathsf{Type}_i), \ \Sigma(R : A \to B \to \mathsf{Type}_i)(e : A \simeq B).$$
$$\Pi ab.(R \ a \ b) \simeq (a = \uparrow_e b); \operatorname{id}_{\mathsf{Type}_i}; \operatorname{univ}_{\mathsf{Type}_i})$$