
Design Mining for Minecraft Architecture

Euisun Yoon and Erik Andersen and Bharath Hariharan and Ross Knepper
Department of Computer Science, Cornell University

ey222@cornell.edu, eland@cs.cornell.edu, bharathh@cs.cornell.edu, rak@cs.cornell.edu

Abstract

3D construction sandbox games such as Minecraft have pro-
vided new opportunities for people to express their creativity.
However, individual players have few tools to help them learn
about architectural style or how to improve the structure they
are building. Ideally, players could utilize tools that capital-
ize on the large numbers of 3D models built by others to offer
guidance for their particular project. We trained a neural net-
work to classify a large collection of Minecraft models from
various websites in terms of style (Ancient, Asian, Medieval,
or Modern). We present experimental results demonstrating
that our model can classify the user-indicated style of a struc-
ture with 55% accuracy. We further demonstrate use of this
model to highlight nearest neighbors to a specific query struc-
ture. We have integrated these tools into a Minecraft Mod that
allows players to classify their structure’s style and view near-
est neighbors in real-time.

Introduction
Minecraft is the second most-selling game of all time (Peck-
ham 2016). This game enables players to create 3D struc-
tures out of blocks, which they frequently upload to
websites such as www.minecraft-schematics.com.
Minecraft provides a substantial educational and creative
opportunity to learn about architectural modeling. While
players often create buildings that mimic real-world archi-
tectural styles, they lack resources for improving their build-
ing skills and learning about architecture. Players typically
receive no concrete feedback until they show their model to
other people.

Ideally, users would have tools that can leverage the myr-
iad structures constructed by others and provide specific
analysis and suggestions. Inspired by work in design min-
ing that automatically analyzes large corpora of website de-
signs (Kumar et al. 2013) to provide website-specific sug-
gestions and recommendations, we collected a large collec-
tion of Minecraft models and used a deep learning neural
network to analyze the style of a model and retrieve similar
models created by other users as suggestions. We present ex-
perimental results demonstrating that our model can classify
the user-indicated style of a structure with 55% accuracy.
Additionally, our technique allows users to view other 3D

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: Overview of interface workflow. Scraped models are used
to train a convolutional neural network, where its intermediate out-
put is used to train a k-nearest neighbor algorithm. The neural
network classifies the style of the player’s input model, while the
k-NN algorithm provides style suggestions through outputting its
stylistic nearest neighbors. See Minecraft References for image and
model sources for each indicated Model ID in all figures.

structures produced by other players that are similar in style
to their model. We integrated these tools into a Minecraft
Mod that allows players to classify their structure’s style and
view nearest neighbors in real-time.

This paper makes the following contributions:

• A deep learning classifier of Minecraft models that can
determine with 55% accuracy whether the structure con-
forms to one of a number of popular categories: Ancient,
Asian, Medieval, or Modern.

• An interface that allows players to build structures within
Minecraft and witness the classification.

• A visualizer module that examines a player’s model and
displays similar structures built by other players adjacent
to the player’s model for comparison.



Related Work
Design mining
Kumar et al. (2011) explored semantic properties of web-
sites, enabling retargeting the content of one website into
the style of another. Kumar et al. (2013) then introduced
the idea of mining websites for design patterns. They used
a web crawler to gather 100,000 websites and analyzed the
Document Object Model structure of these websites. They
also built on the work of Lim et al. (2012) by using ma-
chine learning to classify the websites in terms of various at-
tributes. This enabled interesting applications such as query-
ing the database of websites for nearest neighbors of a web-
site. This work demonstrated that automatic techniques can
learn design principles by gathering and analyzing many
exemplars, and make this information useful to designers.
However, this work is limited to the specific domain of web-
site designs. In our work, we extend this idea to 3D voxel
structures and a video game domain.

3D structure mining
In the past few years there has been significant progress
in automatic understanding and classification of 3D shapes
(see (Xu et al. 2017) for a review). Early approaches re-
lied on defining descriptors of shapes (Knopp et al. 2010;
Bronstein et al. 2011). Following dramatic progress in im-
age classification (Krizhevsky, Sutskever, and Hinton 2012),
Su et al. classified 3D shapes by rendering them in multiple
views and using image classification models (Su et al. 2015).
Instead, Wu et al. design machine learning models that work
directly with voxel grids (Wu et al. 2015). While other rep-
resentations of 3D shapes exist, such as point clouds (Qi et
al. 2017), we use the voxel-based representation because it
matches the representation used by Minecraft itself.

Design
We are interested in providing creative assistance to
Minecraft players. Presumably, the player has some target
in mind: a particular kind of structure that they wish to cre-
ate. For example, they might be trying to create a Buddhist
temple. We want to provide them with feedback that tells
them if their goal is reached, and what they can change to
do better. In other words, the system should tell a player if
the structure being built is of a particular kind, and provide
suggestions for improvement.

Unfortunately, the set of things that people might want
to build is large and varied. Specifying by hand the key el-
ements for every kind of structure that one might possibly
build is tedious and requires a lot of expert knowledge. It is
even harder to provide suggestions for improvement, since
these suggestions depend a lot on the exact structure the
player is building and have to be explicitly tailored to each
specific instance.

However, there is now a growing community of Minecraft
players, and there are online forums where people share their
creations, along with tags indicating what they created. We
can leverage this “wisdom of the crowd” in two ways. First,
we can use these collections of player-created models to au-
tomatically learn what a particular style or class of models

means. Concretely, we can use machine learning techniques
to build a mapping from Minecraft models to styles, so that
we can tell a player if the model they created matches a par-
ticular style. This is a hard classification problem because
of the large variation within certain styles, as well as the
subtle differences between styles. Second, these collections
provide a large space of examples, and one way to provide a
player with suggestions or ideas is to surface similar struc-
tures that other players might have built. Doing so requires
a meaningful notion of “similarity” that correlates with the
players’ perceptions of similarity.

Below, we show how we solve these challenges. We first
show how we can automatically organize online collections
of Minecraft models and collect a curated dataset of differ-
ent styles. We next use this curated dataset in conjunction
with modern machine learning techniques to train a classifier
for style. Finally, we show that in the process, the classifier
learns a perceptually meaningful notion of similarity.

Design mining
We focused on architectural styles because buildings are
the most common kind of structures people create. We
mined a community-driven website that hosts a collection of
Minecraft creations. Specifically, we focused on gathering
data for schematics files, a file format created by the commu-
nity for storing components of the 3D Minecraft world. This
format allows flexibility in design and is ideal for captur-
ing architectural structures as it allows the use of third-party
programs which allow editing and/or simulation. While
there exists various web forums that host a collection of
schematics files, we use Minecraft-Schematics (http://
www.minecraft-schematics.com/) as our source
of training data as it provides a set of themes based on the
schematic’s architectural style, where users label their cre-
ations with the fitting theme. In order to broadly classify
architectural styles in a way that matched the source data,
we chose the most popular user-selected themes (Ancient,
Asian, Medieval, and Modern) and defined each theme as a
separate class. We then scraped a total of 857 schematic files
across these classes, utilizing Scrapy, a Python scraping and
web crawling framework. It is worth noting that the cate-
gorization of architectural styles based on the user-selected
themes is nebulous and potentially culturally insensitive. A
curated set of classes would be ideal; our approach itself is
orthogonal to this choice.
Pruning the dataset: Out of the creations that were la-
beled, many structures were found to not be a part of the
labeled category and were thus eliminated from the dataset.
For instance, architectural structures such as the Colosseum
was eliminated from the Modern category. A constraint that
was introduced by our hardware capabilities was the size
of the schematic files - only schematic files of dimensions
66 × 66 × 66 and smaller were used due to memory size
constraints. In total, 391 schematic files were identified as
well-classified and of the appropriate size.

Building a classifier for Minecraft models
Next, we turn to the problem of using this dataset of models
to train a classifier for architectural styles. The goal here is



max 
pool, 

/2

grid size 
- 27

5x5x5 
conv, 

32

5x5x5 
conv, 

32

5x5x5 
conv, 

32

5x5x5 
conv, 

64

5x5x5 
conv, 

64

drop 
out

5x5x5 
conv, 

64

max 
pool 

/2
flatten

dense, 
1024

dense, 
2048

drop 
out

drop 
out

dense, 
4

dense, 
4

gird size 
- 7

model

k-NN

style 
classification

grid size 
- 66

Figure 2: Architecture for convolutional neural network. Our network models differ in the output dimensions of its first set of dense layers:
1024 and 2048 respectively. The output of this set of layers is used for our k-nearest neighbors algorithm in exploring design neighborhoods,
while the output of the last set of dense layers is used for style classification.

for this classifier to be used by Minecraft players to judge if
their particular creation captures their intended style.

Note that this is a difficult classification problem. Differ-
ent models might look very different but still be of the same
style, while similar structures may appear across styles: for
example, towers are ubiquitous in both ancient and medieval
architectures. Furthermore, the differences between styles
might be subtle and localized: for instance, the curvature
of the roof might be defined by just a couple of blocks.
The classifier therefore needs to automatically identify lo-
cal structural motifs that are indicative of style and use them
to make a decision. This leads to the final challenge: these
structural motifs are domain-specific, and no generic, off-
the-shelf shape representation captures them. Instead, the
classifier must figure these out on its own.
Predicting style using convolutional networks: We lever-
age recent advances in computer vision and graphics, and
use convolutional networks (LeCun et al. 1998; Wu et al.
2015) operating on top of voxel grids.

A voxel grid is a 3-dimensional grid, where each grid
cell is called a voxel. Any Minecraft creation can be rep-
resented as a voxel grid, and indeed, building structures in
Minecraft involves changing the material of a given voxel.
Thus, in Minecraft structures, each voxel is associated with
a particular material. We start by first representing this ma-
terial in binary (traditional one-hot representations were too
memory-inefficient). That is, we use an M -dimensional vec-
tor to represent 2M materials. M = 8 in our experiments.
Given a d×d×d voxel grid, this representation of materials
allows us to represent any creation as a d×d×d×M tensor.

Our task is to build a classification model that takes this
tensor representation as input and outputs the architectural
styles. Convolutional networks are especially suited for this
problem because they are built out of convolutions: an oper-
ation that searches for local patterns in a grid. These mod-
els have also led to astounding progress in image recogni-
tion (Krizhevsky, Sutskever, and Hinton 2012). We briefly
explain the structure of these networks below.

Convolutional networks can be thought of as a series of
learnable functions composed with each other. In networks
operating on voxel grids, the input and output of each func-
tion or layer is a 4-dimensional tensor representing the voxel
grid, often called a feature map. Intuitively, each layer looks
at local neighborhoods in its input voxel grid and tries to
identify patterns by convolving its input with a filter, whose

weights are learnable parameters. Mathematically, for input
tensor x and filter w, the output tensor y is given by:

yi,j,k =

K∑
l=−K

K∑
m=−K

K∑
n=−K

∑
d

xi−l,j−m,k−n,dwl,m,n,d

(1)
Here K is the kernel size and determines the size of the lo-
cal neighborhoods. A convolutional layer has multiple fil-
ters, and all the outputs are stacked together into another
4-dimensional tensor.

Convolutional networks also frequently subsample their
inputs as they go deeper and deeper into the network. This
has the effect of increasing the size of the local neighborhood
that is considered in subsequent layers, while also increasing
their invariance to fine-grained changes. Thus, the earlier
layers might identify fairly local patterns, such as the sizes
of windows, while later layers might be looking at global
properties such as the presence of towers. This gradation
from object parts to objects to scenes as one goes deeper
into the convolutional network is central to their represen-
tative power, especially in our problem domain: subtle local
differences in style can be detected early on, and later lay-
ers can keep track of the presence of these differences while
being invariant to their precise location.

Our convolutional network architecture is shown in Fig-
ure 2. The architecture consists of seven convolutional layers
with max pooling after the fourth and seventh layers, fol-
lowed by a fully connected layer and a softmax classifier.
The input is a 66 × 66 × 66 × 8 tensor as described above.
Note that our focus here is on providing a proof-of-concept
design aid, and not on creating the best style classifier. As
such, we did not experiment with other architectures; there
might be better choices.

The learnable parameters of convolutional networks are
the weights of the filters in each convolutional layer. These
weights are set to minimize a loss function on the training
set by using variants of (stochastic) gradient descent: one
starts with a random initialization of the parameters and then
iteratively takes steps along the negative gradient of the loss
with respect to the parameters. Since our problem is one of
classification, we use the cross-entropy loss. Given predicted
class probabilities pi, i = 1, . . . C for a given example x
where C is the number of classes, and the true label y for
this example, the cross entropy loss is simply the negative
log probability of the true class:L(p, y) = − log py . Our



Seed model Nearest neighbors
Model ID 3 4 5 6

Tag Ancient Ancient Ancient Ancient
Prediction Ancient Ancient Ancient Ancient
Distance - 0.019 0.019 0.027
Model ID 7 8 9 10

Tag Asian Asian Asian Asian
Prediction Asian Asian Asian Asian
Distance - 0.058 0.077 0.08

Figure 3: Good examples of classifications and nearest neighbor matches. The left column shows seed models, which could be user-provided
but here are taken from a held-out test set drawn from the same Minecraft model repository as the training set. Each example is annotated
with the user-selected style tag, the classifier’s style prediction, and the cosine distance between the seed model and its nearest neighbors. In
these examples, the model appears to recognize architectural structures. The closest two neighbors of Seed Model 3 are ancient wells, and the
three neighbors of Model 7 are Asian pagodas. See Minecraft References for image and model sources for each Model ID.

Seed model Nearest neighbors
Model ID 11 12 13 14

Tag Medieval Medieval Medieval Medieval
Prediction Medieval Medieval Medieval Medieval
Distance - 0.051 0.053 0.055
Model ID 15 16 17 18

Tag Modern Modern Modern Modern
Prediction Modern Modern Modern Modern
Distance - 0.028 0.086 0.115

Figure 4: A set of classifications and nearest neighbor matches that show different types of structures that have a similar style. Row 1 contains
figures which all demonstrate a cottage-like medieval house, while row 2 figures illustrate international style modern architecture. Note that
along with examples in Figure 3, most well-behaving examples have cosine distances of magnitude less than 0.1 from the seed model. See
Minecraft References for image and model sources for each Model ID.

model follows fairly standard protocol and uses off-the-shelf
libraries (Abadi et al. 2016), making it easily extensible.

Exploring design neighborhoods
As discussed above, we want the system to not only tell the
player if their structure is of the target style, but also pro-



vide suggestions for improvement. For example, they may
want ideas about additional structural motifs to incorporate
in their creation, or they may want to change the style of
their creation, or incorporate features from other styles. We
want to provide such suggestions by leveraging our mined
dataset to surface similar models that other players have
built. For this, we need a notion of similarity that coincides
with our intuitions.

Our convolutional-network-based style classifier provides
a way of computing this similarity. As discussed above, con-
volutional networks can be thought of as a series of learnable
functions composed with each other. The very last layer of
our convolutional network is a linear layer that produces 4
scores, one for each style, with the predicted style being the
one with the largest score. The score for each style is thus
a linear function of the inputs to this layer (or the outputs
of the penultimate layer). Thus the output of the penulti-
mate layer can be considered as an intermediate style space,
in which different styles such as the “Asian-ness” of a de-
sign correspond to simple linear functions. This is in con-
trast to the space defined by other intermediate layers, in
which style is a more complex, non-linear function. After
the convolutional-network-based classifier has been trained,
we can chop off the last layer, and use the rest of the network
as a mapping from Minecraft voxel grids to this meaningful
style space. We hope that, as in other domains such as visual
recognition (Donahue et al. 2014), this intermediate space
will contain rich semantic information beyond the original
task the convolutional network was trained for.

This style space allows us to explore the neighborhood of
any given Minecraft model. Concretely, we embed the user
model into this style space and retrieve the nearest neighbors
(using cosine distance: d(x,y) = 1− x·y

‖x‖‖y‖ ) in this space.
Our experiments below show that these nearest neighbors
indeed surface style elements that the convolutional network
was not explicitly trained for.

Evaluation
Evaluating classification accuracy We trained two con-
volutional networks with different architectures on the task
of classifying Minecraft structures as one of Ancient, Asian,
Medieval, or Modern. The two architectures are both equally
deep, but vary in the number of channels in the last few fully-
connected (or dense) layers and therefore in the number of
learned parameters (a dense layer with cin input channels
and cout output channels has cincout parameters). Each net-
work was trained with Adagrad for 200 iterations with an
initial learning rate of 1.

We achieve the following accuracy for model types:
Model Test Accuracy (%)
Material-count baseline 45
CNN-1024 50
CNN-2048 55

The best accuracy we achieve is 55% on the CNN 2048
model, which is significantly better than the chance perfor-
mance of 25%, and also much better than a baseline logistic
regression model using a histogram of material counts as
features, which has an accuracy of 45%.

Figure 5: In-game screenshot of real-time Minecraft interface. The
interface generates a glass cage in which the user can build their
structure in, and its nearest neighbors are generated around the cage
as seen on the structure on the left. The generated neighbor in this
image is Model 31, as cited in Minecraft References.

Nevertheless, the fact that the test accuracies are not
very high can be attributed to two reasons. First, the task
itself is challenging: style judgements are hard to make,
and sometimes the user annotations that we are relying on
can be noisy. Second, we find that the training accuracies
(∼ 99.5%) are almost twice the test accuracies for both mod-
els, indicating overfitting. This problem is likely the result of
our small training set, and will be mitigated as online com-
munities of players grow.

Exploring the nearest neighbors Next, we retrieve the
nearest neighbors in style space as discussed in the previ-
ous section. Figures 3 through 6 show examples of retrieved
nearest neighbors, with the first column being the “seed” or
the “query”. A comprehensive set of nearest neighbor mod-
els can be found on https://minecraft-design.
github.io/. Below we discuss noteworthy observations
which may assist users in creating stylized models.

Figures 3 and 4 show some examples of meaningful near-
est neighbors. Particularly, Figure 3 shows cases where the
retrieved neighbors capture the same architectural structure
category (“well” and “pagoda” respectively), even though
the convolutional network was not explicitly trained to rec-
ognize these structures. Models in Figure 4 ostensibly cor-
respond to different kinds of structure, but the similar visual
appearance indicates that the network is in fact latching on
to some implicit style. In all these cases, looking at these
nearest neighbors can provide a user for additional ideas on
how to improve their creation.

Figure 6 shows examples where our model performed less
well. In the top row, the cosine distance between the seed and
the neighbors is much larger than the average distance be-
tween seed and neighbor models, which is 0.073. This sug-
gests that the seed model is in a sparsely-populated part of
the style space and there are not many similar models in the
dataset. As such, the “nearest neighbors” are actually fairly
far from the seed model. The middle row shows an exam-
ple of a misclassified seed model. Notably, most misclas-
sified seed models tend to have nearest neighbors from the
category they are misclassified into, as the network appears
to falsely extrapolate information that they are of a similar



Seed model Nearest neighbors
Model ID 19 20 21 22

Tag Ancient Modern Ancient Ancient
Prediction Modern Modern Ancient Ancient
Distance - 0.333 0.34 0.341
Model ID 23 24 25 26

Tag Asian Medieval Medieval Medieval
Prediction Medieval Medieval Medieval Medieval
Distance - 0.04 0.051 0.057
Model ID 27 28 29 30

Tag Medieval Medieval Medieval Medieval
Prediction Medieval Medieval Medieval Medieval
Distance - 0.112 0.372 0.115

Figure 6: Top Row: Poor quality nearest neighbors. Note the large cosine distances, suggesting that the seed model is in a sparsely-populated
part of the style space . The first nearest neighbor shares the seed model’s incorrectly predicted style, Modern, and the remaining neighbors are
of the correct style, Ancient, but none of them are similar. Middle Row: Misclassified seed model with close neighbors from the incorrectly
predicted class . Bottom Row: Similar models that were not classified as neighbors: the cosine distances (distances from Model 27 are shown)
are large in spite of the perceptual similarity. See Minecraft References for image and model sources for each Model ID.

architectural style. The bottom row shows 3D models that
subjectively appear to have similar features yet their seman-
tic similarity is not correctly identified because our neural
network classified them into different styles.

Real-time Minecraft Interface
We modified Glowstone, an open source Minecraft server,
to create an experimental interactive in-game interface that
allows people to classify buildings they created. In our inter-
face, users can build structures within a 66 × 66 × 66 cage
where we use our neural network model to predict the ar-
chitectural style the user has built, as shown on Figure 5. In
addition, users can explore the nearest neighbors generated
by the interface after they have completed their model.

Conclusions
In this paper, we demonstrate the ability to “design mine”
Minecraft models of buildings to help a Minecraft player.

We trained a neural network that links features of a
model’s design (materials and structure) to the user-specified
style. We also use the neural network to explore simi-
larity within the learned space of designs. The user can
query the neural network with an arbitrary user-generated
model and obtain the nearest neighbor models provided by
the crowd. This allows a user to identify and modify de-
sign cues to cause their model to be classified as a cer-
tain style. All code, data and models will be available at
https://minecraft-design.github.io/.

In the future, we hope to identify specific model features
(windows, material etc.) that contribute most strongly to its
classification. Our style classification in conjunction with
identification of these features is a way of mathematically
capturing style and is a first step towards the eventual goal
of procedurally generating cities of certain styles. We be-
lieve that tools such as those presented in this paper can help
people to unleash their creativity in pursuits like Minecraft
by presenting design choices more explicitly to users.



Acknowledgments
This material is based upon work supported by the National
Science Foundation under Grant No. 1526035. We are grate-
ful for this support.

Minecraft References
The following is a list of Minecraft model
creations from Minecraft Schematics (www.
minecraft-schematics.com/) used in this pa-
per, corresponding to the Model ID listed in each figure.
Each model is cited with its model name, creator ac-
count name, and link to its model creation, where each
link needs to be appended to the following prefix url:
www.minecraft-schematics.com/schematic.
For example, Model 1 listed below can be accessed at
www.minecraft-schematics.com/schematic/
2538/.
1. Default Desert Temple Supreme, KarmicForager, /2538/
2. Maya temple, Bitconion, /9319/
3. Desert Village Well, lunchboxxx19, /9057/
4. Village Well 3x3, lordolaf, /8175/
5. Village Well 3x3 Sandstone, lordolaf, /9764/
6. Ancient Skyway Modified with sewer(Corner), mrnada, /3132/
7. Japanese Pagoda, firemonkey, /1220/
8. large pagoda (just house), CoonClaws, /1722/
9. – The Bagel Pagoda –, w4rl0, /125/

10. Pagoda, Bender, /2812/
11. Medieval Storage, CeepreCaleb, /9257/
12. Rohan stable (it’s a harda world schematica project: Rohan),

spokiechris, /8175/
13. first farm, runaddict2, /9764/
14. Old Church, DadCANN, /8792/
15. Garage with office, pratenik1, /5893/
16. Modern House, PrincesseRena, /11704/
17. Modern House 2, PrincesseRena, /11676/
18. Modern 2 story house above small pond, splinteredvoyagers,

/197/
19. House One, Elarson, /8924/
20. Modern House, SuperNovaXII, /11180/
21. Mountain House, mikerspiker, /1402/
22. Standard Temple of quartz, ZAZA, /975/
23. Pagoda of LIGHT, beefmouth, /1411/
24. Rustic House(Unfurnished), ChocoKyle, /9658/
25. Town Wall, BASsFI3ND, /5112/
26. MC tower, RicksPlumbus, /10629/
27. Bonetown Windmill, EdCr0w, /8922/
28. SmaKHouSE, Oleg BoG, /9566/
29. Papps Mill, sammf, /9948/
30. Sandstone Winmill (Medieval), DadCANN, /8808/
31. haunted mansion by zerte, zerte, /2922/

References
Abadi, M.; Barham, P.; Chen, J.; Chen, Z.; Davis, A.; Dean, J.;
Devin, M.; Ghemawat, S.; Irving, G.; Isard, M.; et al. 2016. Ten-
sorflow: A system for large-scale machine learning. In OSDI, vol-
ume 16, 265–283.

Bronstein, A. M.; Bronstein, M. M.; Guibas, L. J.; and Ovsjanikov,
M. 2011. Shape google: Geometric words and expressions for
invariant shape retrieval. ACM Transactions on Graphics (TOG)
30(1):1.
Donahue, J.; Jia, Y.; Vinyals, O.; Hoffman, J.; Zhang, N.; Tzeng,
E.; and Darrell, T. 2014. DeCAF: A deep convolutional activation
feature for generic visual recognition. In ICML.
Knopp, J.; Prasad, M.; Willems, G.; Timofte, R.; and Van Gool, L.
2010. Hough transform and 3d surf for robust three dimensional
classification. In European Conference on Computer Vision, 589–
602. Springer.
Krizhevsky, A.; Sutskever, I.; and Hinton, G. E. 2012. Imagenet
classification with deep convolutional neural networks. In NIPS.
Kumar, R.; Talton, J. O.; Ahmad, S.; and Klemmer, S. R. 2011.
Bricolage: example-based retargeting for web design. In Proceed-
ings of the SIGCHI Conference on Human Factors in Computing
Systems, 2197–2206. ACM.
Kumar, R.; Satyanarayan, A.; Torres, C.; Lim, M.; Ahmad, S.;
Klemmer, S. R.; and Talton, J. O. 2013. Webzeitgeist: design min-
ing the web. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, 3083–3092. ACM.
LeCun, Y.; Bottou, L.; Bengio, Y.; and Haffner, P. 1998. Gradient-
based learning applied to document recognition. Proc. of the IEEE.
Lim, M.; Kumar, R.; Satyanarayan, A.; Torres, C.; Talton, J.; and
Klemmer, S. 2012. Learning structural semantics for the web.
Technical report, Tech. rep. CSTR 2012-03. Stanford University.
Peckham, M. 2016. ‘minecraft’ is now the second best-
selling game of all time. http://time.com/4354135/
minecraft-bestelling/. Accessed: 2018-06-03.
Qi, C. R.; Su, H.; Mo, K.; and Guibas, L. J. 2017. Pointnet: Deep
learning on point sets for 3d classification and segmentation. Proc.
Computer Vision and Pattern Recognition (CVPR), IEEE 1(2):4.
Su, H.; Maji, S.; Kalogerakis, E.; and Learned-Miller, E. 2015.
Multi-view convolutional neural networks for 3d shape recogni-
tion. In Proceedings of the IEEE international conference on com-
puter vision, 945–953.
Wu, Z.; Song, S.; Khosla, A.; Yu, F.; Zhang, L.; Tang, X.; and Xiao,
J. 2015. 3d shapenets: A deep representation for volumetric shapes.
In Proceedings of the IEEE conference on computer vision and pat-
tern recognition, 1912–1920.
Xu, K.; Kim, V. G.; Huang, Q.; and Kalogerakis, E. 2017. Data-
driven shape analysis and processing. In Computer Graphics Fo-
rum, volume 36, 101–132. Wiley Online Library.


